South Africa's leading Eco Store - Need Assistance? 0861 661 326 or Click Here

LiFeYPO4 benefits

  • Shelf Price < Lead Acid shelf price
  • Daily cycle for more than 10 years
  • Weight < 25 % of Lead Acid
  • Volume < 33% of Lead Acid
  • 100% Safe & Environmentally friendly

LiFeYPO4 features

  • No life degradation up to 40 °C
  • LiFeYPO4 = 12kg / kWh
  • Lead Acid = 60kg / kWh
  • Charge efficiency > 98% @ C10
  • Discharge efficiency > 98% @ C10

Description

Specifications


# 13V Series (V-Ah-kWh) Max. Current (A) Power @ Vmin (kW) Lead Acid Equivalent (50% DoD)
Continuous Burst (1 min) Peak (10 sec) Continuous Burst (1 min) Peak (10 sec) Voltage (V) Rating (Ah) Capacity (kWh)
1 BN13V-77-1k BRICK 100 120 150 1.3 1.56 1.95 12 214 2.57
2 BN13V-310-4k BLOCK 100 120 150 1.3 1.56 1.95 12 861 10.33
3 BN13V-310-4k BLOCK+ 100 120 150 1.3 1.56 1.95 12 861 10.33
# 26V Series (V-Ah-kWh) Max. Current (A) Power @ Vmin (kW) Lead Acid Equivalent (50% DoD)
Continuous Burst (1 min) Peak (10 sec) Continuous Burst (1 min) Peak (10 sec) Voltage (V) Rating (Ah) Capacity (kWh)
4 BN26V-154-4k BLOCK 100 120 150 2.6 3.12 3.9 24 428 10.27
5 BN26V-154-4k BLOCK+ 100 120 150 2.6 3.12 3.9 24 428 10.27
6 BN26V-310-8k 320 600 1,200 8.32 15.6 31.2 24 861 20.66
7 BN26V-460-12k 320 600 1,200 8.32 15.6 31.2 24 1,278 30.67
8 BN26V-1540-40k 320 600 1,200 8.32 15.6 31.2 24 4,278 102.67
# 52V Series (V-Ah-kWh) Max. Current (A) Power @ Vmin (kW) Lead Acid Equivalent (50% DoD)
Continuous Burst (1 min) Peak (10 sec) Continuous Burst (1 min) Peak (10 sec) Voltage (V) Rating (Ah) Capacity (kWh)
9 BN52V-77-4k BLOCK 100 120 150 5.2 6.24 7.8 48 214 10.27
10 BN52V-77-4k BLOCK+ 100 120 150 5.2 6.24 7.8 48 214 10.27
11 BN52V-154-8k 320 400 1,200 16.64 20.8 62.4 48 428 20.54
12 BN52V-230-12k 320 600 1,200 16.64 31.2 62.4 48 639 30.67
13 BN52V-310-16k 320 600 1,200 16.64 31.2 62.4 48 861 41.33
14 BN52V-460-24k 320 600 1,200 16.64 31.2 62.4 48 1,278 61.34
15 BN52V-770-40k 320 600 1,200 16.64 31.2 62.4 48 2,139 102.67
16 BN52V-1250-65k 320 600 1,200 16.64 31.2 62.4 48 3,472 166.66

Safety Compliance Videos


The use of lithium-ion batteries in many of today’s electronic consumer products has increased significantly due to the advantages of high energy density, high cell voltage, and longer shelf life over that of comparable battery chemistries. The cell chemistry of conventional lithium-ion batteries has been limited by the choice of suitable lithium liberating cathode materials i.e. the three oxide electro active materials: LiMn2O4, LiCoO2 and LiNiO2 (lithium-manganese, lithium-cobalt, and lithium-nickel respectively). These materials are generally found to offer high electrochemical performance at the expense of poor thermal stability. The three lithium oxide’s thermal instability when over-charged has limited the application of these materials to small and relatively low capacity lithium-ion batteries.

The novel use of a phosphate-based material in the cathode has been found to offer many of the advantages of traditional lithium-ion chemistries without sacrificing the safety necessary in a large format application. In this paper, the results of safety testing comparing phosphate-based cells and the most popular of the three lithium oxide materials (lithium-cobalt), is presented. Test data will show that the safety circuitry used in popular lithium-cobalt 18650 cylindrical cells will not prevent an event or propagation of an event if thermal runaway occurs within one cell in a battery pack. In contrast, abuse testing of phosphates based cells shows no thermal events under identical conditions.